Single- and multi-label classification of
UCM satellite images

This report applies the AlexNet CNN architecture on the UCM dataset and investigates how
changes in hyperparameters can optimise our model and lower the test error rate.
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Introduction

In big data analysis, deep learning is the fastest-growing trend and widely applied in image
analysis tasks, segmentation and object detection. Also in the field of remote sensing, where
one of the main tasks is to learn the representation of an image, the popularity of deep
learning is growing quickly. It is therefore no surprise that many remote sensing scientists
are embracing deep learning techniques to classify their satellite images (Zhu et al., 2017).

In particular, deep convolutional neural networks (CNNs), which apply multiple convolution
and pooling layers, are able to detect features of different scales and therefore are hopeful in
land-use predictions (Hu, F., Xia, Hu, J., & Zhang, 2015). Our objective was to build a single-
and multi-label classification model that can characterize land-use. To get optimal results we
had to optimise our parameters by choosing initial values for our hyperparameters. The UCM
dataset, used in this task was obtained from the USGS National Map Urban Area Imagery
collection. As a CNN we tested Alexnet which was known for its low test error (Zhu et al.,
2017).



Methods

Dataset

We are working with a UCM dataset that contains 2100 images (Yang & Newsam, 2010).
The shape of the images is 3x256x256. Three layers, one for each colour in RGB and the
image resolution is 256x256 pixels. These images are evenly divided into 21 different
categories. These categories are:

agricultural forest overpass
airplane freeway parkinglot
baseballdiamonds golfcourse river

beach harbor runway

building intersection sparseresidential
chaparral mediumresidential sotragetanks
denseresidential mobilehomepark tenniscourt

Besides this categorical division, each image is also classified as one or more labels. The
labels are similar to the categories, but we have 17 labels instead of 21 categories. The
labels are also more generalised than the categories. The 17 labels are:

airplane dock sea
bare-soil field ship
building grass tanks
cars mobile-home trees
chaparral pavement water
court sand

In this paper we will try to tackle two different cases. We will build a neural network that
predicts the classes for the images. We will look at a single-label classification and
multi-label classification. For the single-label classification we will use the 21 categories and
for the multi-label classification we will use the 17 labels.

Packages

To get a full understanding of our script, we decided to avoid auto machine learning
packages and packages directly implemented from the book ‘Dive into Deep Learning’
(Zhang et al., 2020). Basically, we did not use functions that were an abbreviation of a larger
function, in particular when we trained and evaluated our model. Three examples of
functions that we included in our script are the try_gpu(), accuracy() and
evaluate_accuracy_gpu() functions. We also included an Accumulator class. The current
script only includes d2I packers when it links to functions that can be considered minor
functions. This boils down to the animator and lambda functions from d2l.



Single-label classification

For the first part of the project, the single-label classification, we tried to implement AlexNet
and made slight changes to fit our image sizes. We chose AlexNet, because AlexNet
achieved excellent performance in the 2012 ImageNet challenge (Zhu et al., 2017) and it
was also discussed in the book, Dive into Deep Learning, that was used for the course. The
main structure of AlexNet consists of five convolutional layers and three fully connected
layers (figure 1). We had to change some minor parameters in the network, due to a
difference in image size. Where AlexNet is made for 224x224 images, we work with 256x256
images. We didn’t resize our images, because according to the course book, it's not
considered a smart practice.

Since our images are different sizes and we also have only 21 classes, we have to change
some layers in the network. After the convolutional layers, the network flattens the image.
Due to the difference in input size the images in our model have a (1x256x6x6) shape
instead of the (1x256x5x5) shape from AlexNet. Therefore we have to change our input
features for our first fully connected layer from 6400 to 9216. Since the output layer
corresponds to the amount of classes we have to change the output from (1,1000) to (1,21)
(figure 2).

Now we need to prepare the images so the network can handle them. To load the data with
torch.utils.data.DataLoader, we first split the images and labels into a training and test
dataset. Our first step is to extract the correct label from the image names. The second step
was a division of index numbers for the training and test dataset. We used a 80%-20%
distribution for the training and test data respectively. This means we have 80 images for
each class in our training dataset and 20 images for each class in our test dataset. The next
step was splitting our images and our labels according to the training and test index
numbers. Since we used the same indexes to split the labels and images, they correspond
to each other in different dataframes. We implemented a Dataset class to combine our
images and the labels together. In this class we also made sure to Resize our images to
256x256, because some images came out in slightly different shapes. Four our final step we
needed to load the data and make the data iterable. Therefore we used the previously
mentioned Datal.oader. Here we also specified our batchsize, which is 128 just like AlexNet.
Now the data is ready for the network. To make sure our images had the correct label, we
plotted some images for several batches and confirmed the data was loaded correctly (figure
5).

When we trained our model we had to choose a loss function, which measured the
performance of our classification model. Because we were dealing with a classification task,
we chose the binary cross-entropy loss function from Pytorch that analysed probability
values ranging from 0 to 1 and compared these with the actual label. Binary because we
predict the probability of an image belonging to one single class. In our single-classification
task we calculated the accuracy by applying a hard prediction boundary by taking the
highest prediction probability (y_hat) and compared this with the true label (y). The large
dataset with 2100 images required us to send our data to the GPU, so that pixels could be
processed in parallel which reduced training time.



We also wanted to add batch normalization in our model to see if we could make our model
faster and more stable (Santurkar et al., 2018; loffe & Szegedy, 2015). In general batch
normalization is done before the activation functions, but we found a lot of discussion in
blogs and fora about the difference between batch normalization before or after activation
function. We looked for some scientific literature about this difference, but couldn’t find clear
research on this specific issue. Therefore we decided to extend our basic model two times.
Once with batch normalization before the activation function (figure 3) and once with batch
normalization after the activation function (figure 4). We focus on the networks with batch
normalization because it learns faster, and is more stable compared to our basic model.

Multi-label classification

The second part of the project, the multi-label classification has a comparable approach
compared to the single-label classification task. Instead of predicting one class out of the 21
categories per image the model now should be able to predict multiple classes out of the 17
labels per image (Chaudhuri et al., 2017). We will use the same network structure as the
single class prediction. The output layer has to be changed from (1,21) to (1,17) to deal with
the different amount of classes.

We can use the same image distribution, but not the same labels. The input for multi-labels
has to be changed to a tensor with ones for the classes present in the image and zero’s for
the classes not present in the image. It's also important to make sure all the values in the
label tensor are float values. We can use the same index numbers that were used for the
training and test data split. Now we can use the same Dataset class to combine our images
and the new labels together and load the data with a Datal.oader.

For our multi-label classification task, a limitation of our cross entropy loss function was that
it could only handle single label outputs. To deal with this we chose the loss function nn.BCE
that allowed us to apply a multi-class classification.



Result and discussion

Single-label classification

We trained our basic model with a learning rate of 0.01 and 0.05 for 100 epochs each. At
first it looked like a learning rate of 0.05 would give better predictions at a faster rate in
comparison to the model being trained with a learning rate of 0.01. However, we quickly
found out that a learning rate of 0.05 gave some problems. Where the model starts learning
immediately with a learning rate of 0.01 (figure 6), it can take quite some time before the
model starts learning anything with a learning rate of 0.05 (figure 7). We shortly looked into a
dynamic learning rate that increases after a set amount of epochs, but training the model
with a 0.05 learning rate also resulted in catastrophic interference (figure 8). Sometimes the
model was able to quickly recover from the event, but most of the time the model continued
with a flat line at roughly 0.05 accuracy, the guessing rate. We didn’t check if the model was
stuck infinitely or it was just because the model sometimes takes a lot of epochs before it
starts learning something. Due to these errors we continued with a learning rate of 0.01. The
basic model trained for 200 epochs can reach a test accuracy around 0.6 (figure 9). For the
first 100 epochs the test accuracy keeps up with the training accuracy, but in the second half
of the 200 epochs it’s clear that the test accuracy converges while the network keeps
improving on the training accuracy till it gets really close to 1.0. We didn’t experience real
overfitting, because the test accuracy didn’t go down, but stays around 0.6.

Our second model is similar to our first model except for the extra batch normalization after
the convolutional layer and before the activation function, ReLU. Conveniently batch
normalization is used to make models able to learn at a more stable and faster rate. This
directly plays into our shortcomings of the basic model. It's unstable or slow. Since it looked
like a learning rate of 0.05 would give better predictions for our images, we first tested our
updated model with a learning rate of 0.05. The model learns at a much quicker rate now the
batch normalization is added (figure 10). The training accuracy skyrockets and approaches
1.0 fast. Sadly, the model loses quite a bit of accuracy. The newer model with batch
normalization seems to converge at a test accuracy in a range of 0.2 to 0.4 (figure 10&11.
This is significantly lower than our basic model where we can reach accuracies of around
0.6. Therefore we also tested our batch normalization model with a learning rate of 0.01. The
updated learning rate resulted in a very similar model with slight changes (figure 12). The
models training accuracy goes even faster to 1.0 and the training and test accuracy are
more stable. The test accuracy has some peaks above the previous range, it's hard to say if
this is the model being better or just random change. We think a test accuracy can be
expected to be in the same range of the test accuracy of the model with a learning rate of
0.05. It’s also good to note that, just as the basic model, our batch normalization model
doesn’t really overfit. The test accuracy doesn’t decline and keeps itself in most cases within
a certain range.

For our third model we made a slight change in computation order. Instead of batch
normalization after a convolutional layer and before an activation layer, we put it after the
activation layer. We expected rather similar results to our second model. Training the model
at a learning rate of 0.01 we see the same pattern as our second model (figure 13). It's a lot
more stable than our basic model and also the learning accuracy approaches 1.0 really
quick. A big difference however, was the test accuracy. The test accuracy seemed to be



structurally higher than our model with batch normalization before the activation function.
Training our third model with a learning rate of 0.05 resulted in an even higher test accuracy
(figure 14). With a learning rate of 0.01 our third model can easily reach a test accuracy in a
range of 0.5 to 0.6. With a learning rate of 0.05 we mainly get values for the test accuracy
higher than 0.6 and even crossing 0.7 sometimes. We were surprised by these last results,
since we expected the models to behave similarly and have similar results. The models do
behave similar, but the only difference is the test accuracy being a bit higher.

Multi-label classification

For the single-label, after fine tuning our model we ended up with quite accurate prediction
results for classifications. However, implementing multi-label classification was more
challenging. We knew that we had to change our input data and also our loss function.
Besides this we weren’t sure what we had to change exactly and our time was already
limited, so we had to go with trial and error. After we combined our images with the new
multi-label tensor, which had float32 values inside, the data was ready for input. We also
changed our loss function from nn.CrossEntropyLoss to nn. BCEloss, to deal with the
multiple labels. And we also made sure our output layer gave 17 values instead of 21 values.
After some small tweaks, we ran into a dimension error in the accuracy calculation. This is
where we are still stuck to this day. We checked the shapes of y and y_hat. y has a shape of
(128, 17) and y_hat has a shape of (128, 17). The Runtime Error we get is “The size of
tensor a (128) must match the size of tensor b (17) at non-singleton dimension 1”. It seems
that our y_hat does not have the same size as our output y. But we can’t figure out how this
happened. After this project we would like to find out why this issue occurred and hope to
solve it and learn from it so that we know how to perform both methods in the future.

Discussion

We successfully look back on our single-label classification task. We were able to put
together several models and make them learn with different parameters and achieved a test
accuracy of up to 70%. In this project, we have put a great effort in finding out which
parameters were mostly contributing to a lower test error. We found out that learning rate,
batch size, nr. of epochs play an important role. Because our project was limited to two
weeks, we only experimented with a learning rate of 0.1, 0.05 and 0.1. If we would have had
more time we could spend more time on further fine tuning these initial values.

Spending a lot of time on the single label task helped us to really understand what we did in
every step. However, because of this we had less time to make the multi-label model work.
Unfortunately we also experienced computer issues on tuesday and wednesday of week
2.0ne computer in particular seemed to struggle a lot with the colab environment. This was
already the case with some practicals, but wasn'’t fixable. Running the exact same code
gave CUDA errors 80% of the time on one computer but not on the other computer. This
surprised us, but at the same time was also expected since it also happened with some
practicals.

To summarise, we have learned a lot of skills mainly because for problems that we ran into
during our project, we did not have assistance like we had in the lectures. This stimulated us
to find solutions ourselves when we were stuck via Stack overflow, Google or via the help
from Google Collab. The next time when we are going to build a CNN we would also



implement the image augmentation technique. Including variation in the dataset can help our
model to learn better from our images. Because of the challenge to link the correct image to
the label, when duplicating the image we decided to not use this method for this script. Other
improvements on our current network can be to implement the architecture neural networks
that have been designed after AlexNet in 2012 and therefore potentially result in more
accurate prediction results.



Implementation

Here we provide the shareable link to our code:
https://drive.google.com/file/d/1a2ZT4Ss7UgTzX7MprgrG8ygxSoh4IP4T/view?usp=sharing
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Figures

Figure 1: AlexNet basic structure
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figure 2: basic model figure 3: batchnorm before ReLU figure 4: batchnorm after ReLU
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Figure 5: Visualize image with label. Check if data is loaded properly
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Figure 6: Basic Model, Ir = 0.01
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Figure 7: Basic model, Ir = 0.05
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Figure 8: Basic model, Ir = 0.05. Catastrophic Figure 9: Basic model, Ir = 0.01, Converged network
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Figures, batch normalization added before ReLU function model

Figure 10: Batch normalization before ReL U function Figure 11: Batch normalization before Relu function
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Figure 12: Batch normalization before ReLU function
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Figure 13: Batch normalization after ReLU function Figure 14: Batch normalization after ReLU function
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