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Abstract 

With more than a million cameras to monitor wildlife actions, human analysis of camera-trap 

data has become time-consuming and unsustainable. Deep learning (DL) algorithms that can 

automatically extract features from photographs, provides a powerful solution but are not 

widely used yet for automated wildlife action recognition (AR).  

Using DL for wildlife presents the added challenge of a highly varying background, causing 

models that classifies objects based on full images to often predict well on training data but 

poorly on new test data. As new images still contain the same species, but in a different 

background, models that classify based on the entire photo seem to experience distraction 

from the background. DL object detection (OD) methods have come up with an innovative 

way to reduce or overcome background distortion by classifying based on the localization of 

the animal. Two OD methods have grown in popularity especially in recent years; YOLOv5 and 

Pose estimation. How these models perform on determining wildlife actions is not much 

explored. 

In a case study on Red deer (Cervus elaphus) in National Park the Hoge Veluwe in The 

Netherlands YOLOv5 and Pose Estimation were applied to examine their predictive capacity. 

A relatively small dataset of 506 single Red deer images labelled with actions foraging, moving 

or other was created. YOLOv5 classified the action of an animal based on a bounding box 

framed around the animal. In the pose estimation approach (PEA), the action was classified 

by a RF algorithm that used key-point features as input extracted from pose estimation 

technique DeepLabCut (DLC). Both methods were evaluated for accuracy, prediction, recall 

and human-effort. During comparison methodological differences were considered.  

It was hypothesized that PEA compared to YOLOv5 would reach higher reliability than pose 

estimation as less training data was needed and it had fine-grained control by only looking at 

the relevant properties of an object. Contrary to expectations, YOLOv5 outperformed PEA by 

achieving a higher accuracy (0.55) compared to PEA (0.53), being six times less time 

consuming, requiring less computational power and by user-friendly inference in which you 

apply the model to new data. Predictive capacity of YOLOv5 is mainly expected to improve by 

increasing the dataset class sizes. Although results point in favour of the YOLOv5 model, there 

is a suspicion that PEA does have a lot of potential, but in hindsight the sub-optimal set-up of 

annotated key-points obscured by the animal and using the full image as input to DLC  may 

have led to a lower predictive capacity. It should be further investigated how much better 

PEA performs compared to YOLOv5 when improving the labelling strategy and when the 

bounding box is used as input for DLC.  While these individual AR models are already a great 

step forward for conservation, for a more extensive applicability it is advised to refine the 

models with a greater library of pictures containing multiple Red deer individuals and by 

classifying behaviour based on animal’s action changes of successive images. 
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1. Introduction 

1.1 Introduction 
Studying the behaviour of wild animals is a topic of great importance to conservationists (Braude, 

Margulis, & Broder, 2017). Knowing animal behaviour helps to understand their requirements, its 

habitat, needs, preferences and dislikes (Mench, 1998). Providing ecologists with accurate and 

extensive knowledge about animal behaviour can help to inform ecology and conservation 

management (Norouzzadeh et al., 2018). Action recognition (AR) refers to identifying what an animal 

is doing in an image (W. Li, Swetha, & Shah, 2020) and is the foundation for understanding the animals 

behaviour (Lehner, 1992).  

Over the past decades techniques to recognize wildlife actions have changed rapidly from using 

ethograms (Altmann, 1974) to the use of animal electronic sensors, that send signals that can be 

picked up by a receiver (Lagardère, Anras, & Claireaux, 1999). A constrain to both of these methods is 

that the observer has to be in the vicinity of the animal before or during the observation (Schneider, 

Taylor, Linquist, & Kremer, 2019). Electronic sensors were considered laborious, expensive (Schneider 

et al., 2019), harmful (Mellor, Beausoleil, & Stafford, 2004) and displacement data is of no use in 

monitoring animals actions. Most importantly, tagging was unable to scale to large populations (X. Li, 

Cai, Zhang, Ju, & He, 2019).  

Camera-traps are an alternative way to extract actions from the data. Camera-traps provide a window 

into the animals world, with lower costs and reduced workload for researchers (Braude et al., 2017; 

Norouzzadeh et al., 2018; Schneider et al., 2019) and therefore are among the most used sensors by 

ecologists (Tuia et al., 2022). With the current rate of acquiring images being extremely large and 

overwhelming automation of AR is essential to allow for large scale analysis (Pereira et al., 2019; 

Schneider et al., 2019).  

The standardized and automated alternative to manual image analysis is computer vision (CV) 

(Schneider et al., 2019), in which computers are programmed to interpret the visual world (A. Zhang, 

Lipton, Li, & Smola, 2020). Early CV models were restricted as they could only recognize parts of an 

object separately and manual calculations of relative distances between these parts were required to 

make a binary choice whether something was an object or not (Fergus, Perona, & Zisserman, 2003).  

In recent years CV has evolved rapidly due to deep learning (DL), which is a subdivision of machine 

learning (ML) which in turn is part of artificial intelligence (AI). ML deals with providing computers the 

ability to learn, without being explicitly programmed (Hastie, Tibshirani, Friedman, & Friedman, 2009). 

DL evolved from ML by having multi-layered neural networks (NN), that attempted to simulate the 

action of the human brain. These DL-models turned out to be extremely powerful because a neural 

network is designed in such a way that it can approximate any function to fit the data (Kratsios, 2021).  

As DL algorithms include automated feature extraction, manual intervention was not needed anymore 

to calculate features like the distance between the muzzle and the toe, which can improve objectivity 

and remove human bias in which researchers assume what features are important (Schneider et al., 

2019). Automated feature extraction can be interpreted by the network recognizing the presence of 

small- or large objects, the position of objects in the image or the colour contrast. Although automatic 

feature extraction came at the expense of human reasoning and interpretability, with DL models being 

often referred to as a black box (Waldrop, 2019), DL algorithms often outcompeted traditional ML 

methods especially when using large datasets (Freytag et al., 2016; Schneider et al., 2019).  

Despite its potential, DL is particularly challenging when applied to wildlife-camera-trap data because 

of the uncontrolled varying backgrounds (Ravoor & Sudarshan, 2020). DL algorithms risk to learn 
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patterns including the background, rather than a ‘visual concept’ of animals action that can be applied 

to new data (Beery, Van Horn, & Perona, 2018). Models that perform classification based on full 

images often prove to not be applicable in practice as, whilst in test environments they are able to 

make predictions based on images encountered, the varying reality of different background and light 

conditions has proven to deliver less accurate predictions (Tuia et al., 2022).  

Therefore, DL models that lend itself to more accurate evaluation are object detection (OD) models 

(Michelucci, 2019). Instead of classification based on the full images, these models focus only on the 

relevant properties of the animal (Kubat & Kubat, 2017; Michelucci, 2019). As OD models experience 

less background disturbance, they could provide a powerful solution against overfitting of the 

background, and therefore creating a model also suitable for predictions on new data (Beery et al., 

2018).  

YOLOv5 (Bochkovskiy, Wang, & Liao, 2020) used in recognition is currently a popular method as it can 

very quickly and accurately detect and classify objects based on a bounding box (Bochkovskiy et al., 

2020; Michelucci, 2019). Alternatively pose estimation method DeepLabCut (DLC) extracts key-points 

from animal poses and is well liked as it only outputs the relevant properties of the animal (Mathis et 

al., 2018). The aim of this study was to find out which of the two algorithm works best for wildlife AR.  

While YOLOv5 directly outputs an action, DLC contained key-points as output, requiring an extra step 

to recognize the action. Therefore, after DLC, actions were classified by applying a random forest (RF) 

algorithm that used key-points as input, creating a two-step method called the pose estimation 

approach (PEA). It is hypothesized that PEA would lead to a better predictive performance because of 

its ability to generate synthetic key-points and fine-grained control by only looking at the relevant 

animals key-points (Pereira, Tabris, et al., 2020). PEA is especially interesting because it is stated that 

DLC can already make accurate predictions with a limited number of training data (Nath et al., 2019; 

Pereira, Shaevitz, & Murthy, 2020; Pereira, Tabris, et al., 2020) while for YOLOv5 a greater volume of 

images are needed as multiple permutations of each pose needed to be collected. In addition to 

predictive performance, also feasibility of implementing the methods is considered. As pose 

estimation technique DLC requires more research, has a longer estimated training time, and requires 

labelling of animal key-points for every training image, PEA is likely to be more time-consuming than 

YOLOv5.  

As a case study, 506 single Red deer (Cervus elaphus) images, are used, collected by camera-traps 

scattered across National Park Hoge Veluwe (NPHV), a 50-km2 game reserve in the Netherlands. The 

goal of this study is to apply and compare two leading OD methods (YOLOv5 and the pose estimation 

approach (PEA)) for Red deer AR and evaluate how well they adapt to new data, while taking into 

consideration the level of human effort in creating the methods. 

1.2 Research questions 
RQ 1: How do the methods YOLOv5 and the pose estimation approach (PEA) perform? 

RQ 2: How feasible are the two methods in terms of human effort to build and implement? 

 

  



2. Methods 

2.1 Study system 
National Park Hoge Veluwe (NPHV) is a fenced nature reserve with a total area of 50 km² located in 

the province Gelderland of the Netherlands (Appendix 1: Map National Park Hoge Veluwe). NPHV has 

a temperate climate with relatively mild winters and summers (Grieser, Gommes, Cofield, & Bernardi, 

2006). NPHV covers 5% of the Veluwe which is the biggest contiguous nature reserve of the 

Netherlands and is visited by over half a million people each year. Six diverse landscapes are present, 

resulting from historical land use: drift sand, meadow, dry and wet heathland, pine and oak forest 

(National Park Hoge Veluwe, 2021).  

NPHV is inhabited by many large mammals, including Mouflon (Ovis gmelina), Roe deer (Capreolus 

capreolus), Wild boar (Sus scrofa) and Fallow deer (Dama dama) and approximately 200 Red deer 

(Cervus elaphus) individuals. Red deer belongs to the clade of ungulates characterized by walking on 

hooves (toes) with their heel not connected to the ground (Janis, 1998). Red deer is an herbivorous 

species and their diet consist of grass, heather, leaves, buds and shoots (National Park Hoge Veluwe, 

2021). It is one of the largest deer species in the world and can be found in most of Europe. The animals 

length is between 160cm and 250cm and their weight varies from 120kg to 240kg with males usually 

larger than females (National Park Hoge Veluwe, 2021). Red deer have several prominent and/or 

contrasting body features like slender legs, a thin face, pointy ears and a black muzzle. The orangish 

to brown coloured skin makes them less noticeable in their environment (Rattray, 2009).  

In NPHV, 70 permanent camera-traps continuously record animal activity, with at least eight camera 

stations per habitat type (National Park Hoge Veluwe, 2021). The animals are recorded with wildlife 

camera-traps (HC500, RECONYX, Holmen USA) that are placed on poles 70 cm above the grounds 

surface. The camera-trap data includes variation in lighting conditions by recording 3.1 MP colour 

images (RGB) during daylight and monochrome black and white images in night-time. Camera-traps 

that detect an animal with their passive infrared heat sensor shoots a sequence of 10 images with an 

interval of 0.9 seconds. When the camera is triggered again shortly after, another 10 images are 

recorded and added to the sequence.  

The NPHV camera-trap dataset with content from 2013 and onwards contains half a million sequences 

and more than 6 million images including metadata like the URL, location, time, sequence and unique 

multimedia identifier (Cameratrap DP Development Team, 2021). Volunteers, students and 

researchers worked on labelling images, for example with the type of species, the amount of animals, 

sex and age (Casaer, Milotic, Liefting, Desmet, & Jansen, 2019).  

2.2 Taxonomy of actions 
11 Red deer actions have been detected after image analysis and literature review. Red deer are 

intermediate foragers that graze1 (on grasses), browse2 (on hardwood vegetation) and scan3 

(attempting to forage) (Gebert & Verheyden‐Tixier, 2001). Red deer gait can be distinguished by 

walking4 generally characterized by having mostly 3 legs in contact with the ground and running5 with 

maximum 2 legs in contact with the ground (Wada, 2022). The sixth and seventh action are sitting6 on 

the ground and standing7, in which the ears are low. More often however, sitting or standing is 

accompanied by vigilance8, in which the animal is on her guard with upward pointing ears (Rattray, 

2009). The ninth action is grooming9 in which the animal cleans its fur to remove insects and parasites 

(Graystock & Hughes, 2011). Typical courting behaviour of males is roaring10 (National Park Hoge 

Veluwe, 2021). Animal responses to the sound of camera-traps recording images causes a non-natural 

eleventh action which is watching into the camera11.  
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The above-described actions resulted in 11 Red deer actions (Table 1). To ensure concise action 

labelling for all images during dataset creation, an action annotation protocol was drawn up that 

included all 11 actions (Gils, 2021) of which the action labelling criteria are included in this report 

(Appendix 2: Action annotation protocol). 

Table 1 The 11 different forms of Red deer action, from https://www.agouti.eu/. 

1.Grazing 

 

2.Browsing 

 

3.Scanning 

 

4.Walking 

 

5.Running 

 

6.Sitting 

 

7.Standing 

 

8.Vigilance 

 

9.Grooming 

 

10.Roaring 

 

11.Camera watching 

 

 

 

Labelling these actions unavoidably contained several limitations. First, although it was possible to 

expand action running by trot, pace and gallop, it was decided not to do this because they could be 

open to interpretation and a common dataset was to be immediately understood by all annotators. 

Second, as defecating or urinating were not observed in the dataset, these behaviours were excluded 

from the action protocol. In addition, social actions were excluded as this research focussed on 

recognizing individual actions. Third, limitation to this human labelling protocol was that 

inconsistencies between analyses might still occur as annotators do not always interpret these criteria 

the same way despite the extensive description of actions (Schneider et al., 2019). Therefore, special 

attention has been paid to very precisely specifying the criteria of classes which are mostly confused 

like walking and running, scanning and moving, scanning and grazing/browsing and vigilance and 

standing. Finally, it is recognised that limitations to the action classification can also be a result of 

basing conclusions on single images instead of consecutive images. Whilst this made it more 

manageable to create the models, it reduced reliability of labelling considering actions are a dynamic 

and temporal activity (Pereira et al., 2019). For example, the differences in walking and running 

characterized by contact points with the ground was best observed from consecutive frames but had 

to be distinguished from a single image.  



2.3 Dataset creation 
The data was retrieved from Agouti (agouti.eu), a platform for managing and processing camera-trap 

data and filtered in R (R Core Team, 2020). As all images required action-labelling, key-point labelling 

and processing through the 2 approaches, the number of images that could be dealt with was limited 

to approximately 500 images due to time constraints. After registration and having access to the 

project ‘the Hoge Veluwe wildlife monitoring project’, unzipping the data ‘19 October 2021’ resulted 

in three files: observations.csv, multimedia.csv and deployments.csv that were loaded into R. Filters 

were applied for species Red deer (1) and a single animal (2), reducing the dataset from 449.575 to 

6.895 sequences (Table 2, part 1).  

Table 2-part 1 Initial filtering for single red deer.  

 Filter Sequences 

 Initial Aguti dataset 2013- 2021 449.575 

1 Species Red deer  12.562 

2 Single Red deer  6.895  

To measure how the model worked for new data, independency between the train and test dataset 

was essential (Beery et al., 2018). Therefore, each set was assigned to a different set of camera-trap 

locations (3) and segregated between pre and post 2019 (4) (Table 2, part 2). In addition, to prevent 

repetitive data within each set, the maximum number of sequences per year, per camera-trap location 

was set to 10 (5). Afterwards the available sequences were split into a 700 train ( 80%) and 175 test 

(20%) images, based on consulted literature (Bunkley, 2009). 

Table 2-part 2 Creating independent train and test dataset 

 Filter Train test 

3 Camera-trap location  Set A Set B 

4 Year  < 2019 ≥ 2019 

5 Maximum  Per  year and per camera 
location max 10 sequences 

Per  year and per camera  
location max 10 sequences 

  700 sequences 175 sequences 

Only images with a single animal fully covered in the frame where included (6) (Table 2, part 3), with 

a maximum of one image per sequence (7) aimed to increase the number of rare actions (browsing, 

roaring, sitting and camera watching). Red deer images obscured by vegetation were included to let 

the network learn predicting obscured body parts. Of note is that, pre-testing the YOLOV5 bounding 

box detector revealed some images contained multiple animals that were hard to detect with the 

human eye. Therefore, an extra 19 images were removed (8) ending up with a start dataset of 506 

images, which the numbers matched the pre-intended goal of processing up to 500 images. Of this 

start dataset 394 images belonged to the training and 112 to the test set.  

Table 2-part 3 From image sequences to usable individual images 

 Selection Sequences images 

 Usable sequences 875  

6 Manual criteria selection 556  

7 Manual sequence to image selection   556 

8 Delete multiple animals bounding box  506 -> 394 train, 112 test 
 

No filtering was applied for variation in animals age, viewpoint and shape, habitat type and lightning 

conditions like day or night, ensuring variation on these characteristics in the dataset (Beery et al., 

2018). Given it was stated that, for pose estimation technique DLC, 100 labelled images could deliver 
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a lower than 5 pixel error (Nath et al., 2019), the training set of 394 images seemed sufficient to obtain 

a good key-point prediction. However, when these 394 images for action classification were divided 

over the 11 actions, with on average 35 images per action, a problem arose because this number was 

way to less to capture as many animal viewpoints from different angles, as it was recommended to 

have at least 150, but preferably 500 or more images per class for a reasonable accuracy (Shahinfar, 

Meek, & Falzon, 2020). This meant to train a reliable model out of the 394 training images, only a 

maximum of three action classes could be created. 

The issue of most classes being too small was addressed by merging either a small class with a bigger 

class or multiple small classes into a single large class (Figure 1). For example, as scanning and 

browsing contained only respectively 43 and 7 images, it was determined these could be merged with 

the 134 images of grazing to form the large enough and logical parent class of foraging (184). Likewise, 

in recognition that single images made it difficult to distinguish running and walking classes, these 

were merged to form the large enough and logical parent class moving (171). With the remaining six 

classes, each class with limited images, these were merged to create parent class other (151) that met 

the minimum class size requirement of 150 images (Shahinfar et al., 2020). That all classes contained 

roughly the same number of images was important to prevent models becoming biased towards the 

classes with more images (Norouzzadeh et al., 2018).  

 

Figure 1 Distribution of the chosen Red deer actions (Wickham et al., 2019) 

In R, all 506 images were labelled first with all 11 actions and then also with the 3 parent actions 

foraging, moving and other, according to the criteria in the action annotation protocol (Gils, 2021). 

The result of dataset creation was a csv file containing the filenames, action labels and the metadata 

(Table 3). The time effort in the dataset creation is shown in Table 4. From here programming shifted 

from R to Python used via the community edition of PyCharm (Van Rossum & Drake Jr, 1995), as 

Python better supported possibilities to apply ML and DL. 

 Table 3 Result dataset creation csv file with the attributes behaviour (parent actions) and behaviour_sub (all actions). 

 



80%/20% 

ssplitdetector 

 

Table 4 Time effort dataset creation 

Dataset creation Estimated time in hours 

Filter the Agouti dataset 1 

Downloading Agouti images 7 

Manual image selection  6 

Annotating 506 images action  8 

Total 22 

 

2.4 Object detection 
I applied and compared two object detection (OD) methods to the start dataset: the YOLOv5 and the 

pose estimation approach (PEA)(Figure 2). 

 

 

 

f  

 

g        

 

 

 

 

 

 

 

 

2.4.1 YOLOv5  
YOLOv5 performs animal localisation and action recognition (AR) simultaneously (Michelucci, 2019). 

In this research YOLOv5 was applied with the GUI-driven workflow BOX21, in which users process 

steps by a point-and-click without the need for programming. On several occasions, it was necessary 

to switch to programming with code in Python (Appendix 3: Scripts and models), because this offered 

more possibilities to adjust.   

2.4.2.1 Box 1. Setting up YOLOv5 via BOX21 

BOX21 was accessed by setting up a tunnelling connection to the Wildlife Ecology and Conservation 

Graphics processing unit (GPU) PC at Wageningen University’s Lumen building (RTX3090 24 GB, Nvidia, 

Santa Clara USA) via the Any Desk software which allowed the local PC to connect to the GPU PC , on 

which BOX21 was running. This GPU was needed because training a DL neural network is a resource-

intensive task, and a GPU can perform multiple, simultaneous computations. After the connection was 

 

 

Dataset creation 

 

 

 

 

 

 

Action 

recognition 

 

Animal 

localisation 

 

 

 

Figure 2 Overview of YOLOv5 and the pose estimation approach (PEA). Square outlines indicate 
a DL algorithm and the dashed outline a traditional ML algorithm  

 DeepLabCut 

prediction: foraging 

 

 YOLOv5                PEA 

Random forest 
Prediction:  foraging 

 

YOLOv5 
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established, BOX21 was accessed by typing localhost:8008 in the web browser. As BOX21 required a 

different representation of the input data, the format of the start dataset csv had to be adjusted 

(Appendix 4: BOX21 example input ). All uploaded images were manually checked to make sure every 

image contained one bounding box. In addition, these bounding boxes on BOX21 had to be linked to 

the already annotated action labels, which was done by specifying the labels again in the configuration 

file, selecting bounding boxes based on ‘class like’ and change the bounding box labels to the original 

labels.   

The hyperparameter number of epochs was tuned which described when the entire dataset was 

passed through the network (Hastie et al., 2009). Setting the number of epochs too low risked not 

having enough time to learn. On the other hand, setting it too high will risked being too adapted to 

the training dataset increasing on the test error. Graphs that printed the errors for the train and test 

dataset showed that approximately 300 epochs was an optimum value (Appendix 5: Train and test 

error graphs). The amount of images processed per epoch is called the batch size and was set to 16 to 

find balance between a too low (not reaching optimum) and too high (overfitting) batch size value 

(Hastie et al., 2009).  

As the start dataset contained limited class sizes, specifying hyperparameter image augmentation, in 

which new training images were created artificially, could play an important role to prevent overfitting 

(Michelucci, 2019). Image augmentation methods can prevent overfitting by increasing complexity of 

the model during training, which produces a higher training error, but can lower the error on the test 

dataset (Michelucci, 2019). For YOLOv5 image augmentation argument mixup was applied, that 

extends the training dataset by adding combinations of images (Figure 3) (H. Zhang, Cisse, Dauphin, & 

Lopez-Paz, 2017). Finally, the confidence threshold was set. Initially, the model does not output a 

specific class but instead assigns a confidence value between 0 and 1 for each class (Norouzzadeh et 

al., 2018). For example, setting the confidence threshold to 1 means the model only includes 

predictions when it is 100% certain removing all predictions with lower confidence values. A high 

confidence threshold can result in no bounding box being produced, although for each image a 

bounding box was labelled, creating a false negative. On the other hand, for a low confidence 

threshold, the model can predict multiple bounding boxes, which are called false positives. The 

confidence threshold of 0.5 was chosen to find a compromise between the number of false negatives 

and false positives. All hyperparameters were: network: YOLOv5, epochs: 300, batch size: 16, image 

augmentation: mixup 0.5, confidence threshold: 0.5 

 

Figure 3 visual interpretation of the mixup argument in the YOLOv5 method 

The first YOLOv5 model was trained with the 3 parent actions foraging, moving and other, whereafter 

a second model was trained that included all 11 actions, even though it was known that this second 

model would be less reliable. Predictive performance was measured using accuracy, precision and 

recall. Accuracy showed the percentage of correct predictions by the model, precision the percentage 



of a predicted class that is confirmed that class and recall the percentage of all labels of a class that 

have been correctly classified. Precision values were also used to create the confusion matrix. 

The capability of applying a model to new data is called inference and could be done either via 

BOX21 or programming in Python. For instance, inference via BOX21, the user can either upload new 

data similar as described earlier during training (Appendix 4: BOX21 example input ) or leave out (or 

turn to False) the parameter in validation set. The active model can be run by navigating to assets, 

selecting the images and clicking run model on selection. Alternatively, download the best.pt model 

file from models for both models (Appendix 3: Scripts and models). Specify the URLs of the images 

you would like to predict and the path of your model file and obtain the prediction (Figure 4). Also, 

the time effort of YOLOv5 was included (Appendix 8: Results).  

 

Figure 4 New data image from dataset BSc. student B. Sluiter can be classified via inference. 

2.4.2.2 Box 2. Origin and how YOLOV5 works 

A new family of object detection (OD) models, YOLO which stood for You Only Look Once, emerged in 

2015 (Redmon, Divvala, Girshick, & Farhadi, 2016). Since 2020 the fifth version of the YOLO models, 

YOLOv5 are available (Bochkovskiy et al., 2020) and this network turns out to be one of the best OD 

models currently in circulation. Because YOLOv5 uses the full image as context for predicting bounding 

boxes (Redmon et al., 2016), YOLOv5 is much more efficient compared to previous methods like Fast 

R-CNN that used a sliding window approach in which all proposed object regions were required to go 

through the neural network (Girshick, 2015). YOLOv5 is also faster and more accurate than competing 

OD models like EfficientDet (Michelucci, 2019; Tan, Pang, & Le, 2020).  

YOLOv5 is a convolutional neural network consisting of convolutional layers with at the end a fully 

connected layer. The YOLOv5 network was pretrained on the coco dataset consisting of 328.000 

images (Lin et al., 2014). Applying this pre-trained network to a classification task with relatively few 

samples is called transfer-learning and can be useful as optimized neural network parameter values 

from a pre-trained neural network can be also explanatory for Red deer actions (Lin et al., 2014; 

Pereira et al., 2019).  

YOLOv5 model first divides the image into a grid and predicts for every cell in the image a class 

confidence of the object, like 0.87 for a foraging Red deer. Then the network predicts several bounding 

boxes (Figure 5). The model is trained to predict the correct bounding box by evaluating the area of 

overlap between a predicted bounding box and a true labelled bounding box. The final detection 

combines the best fitting bounding box and adds the prediction of the class with the highest 

confidence value (Michelucci, 2019).  
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Figure 5 Schematic overview of YOLOv5 

2.4.2 The pose estimation approach 
In the pose estimation approach (PEA), first perform key-point localisation is performed using 

DeepLabCut (DLC), whereafter an AR random forest (RF) classifier is applied. 

2.4.2.1 DeepLabCut 

Many implementations for animal pose estimation (PE) have been developed, like DLC (Mathis et al., 

2018), DeepPoseKit (Graving et al., 2019), LEAP (Pereira et al., 2019) and SLEAP (Pereira, Tabris, et al., 

2020). For this research DLC was chosen because of its high performance and large community forums 

in which to be able to ask any questions (Nath et al., 2019). 

DLC was applied with a GUI-driven workflow, however, on several occasions it was necessary to switch 

to programming with code in Python. 18 key-points assumed to maximize variation of each action 

were chosen on parts of the body that represented key-points while also being clearly visible from the 

outside. Visible key-points and key-points obscured by objects such as vegetation were labelled. Only 

key-points obscured by the animal itself, for example the knees on the non-visible side of the animal, 

were not labelled because the reasoning was that these key-points were often harder to predict 

(Figure 6) (Appendix 6: DLC annotation protocol). Labelling took approximately 2 minutes per image 

and thus, the total estimated time for labelling all images was 17 hours, which was performed in parts 

of half an hour, to ensure accurate annotation.  

 

Figure 6 Annotation example from the labelling toolbox of DLC 

Also, for PE technique DLC the hyperparameters were specified. The default network of DLC resnet50 
was chosen which in PE typically consisted of an encoder and a decoder part. The encoder, extracted 



features from the image and the decoder used this information to predict the key-point coordinates 
(Mathis, Schneider, Lauer, & Mathis, 2020). The number of epochs was set to 250.000 based on the 
train- test error graphs (Appendix 5: Train and test error graphs) and the batch size was set to 4. Similarly 
to mixup used in YOLOv5, here image augmentation method imgaug was applied which added training 
data by cropping, shifting, rotating and adding contrast (Nath et al., 2019). All hyperparameters were: 
network: resnet_50, epochs: 250.000, batch size: 4, image augmentation: imgaug  

 
The models predicted key-points for both train and test dataset images. The margin of error was 
expressed in mean average error (MAE) which described the average pixel distance between the 
predicted key-point and its true label. With a training MAE of 23.31px and a test MAE of 217.45px, the 
model does largely overfit, despite applying mixup. Because DLC always predicts all-key-points, the 
white arrows in the key-point prediction plots (Figure 7) show that DLC had trouble predicting not 
labelled key-points (obscured by the animal itself) as the plots show these key-points became outliers 
predicted on completely different body parts. Not labelling these key-points, in retrospect, probably 
was not a sensible annotation choice for this study and might have had a considerable influence on 
the train and test error of the AR.  
 

 
Figure 7 Example key-point prediction plot training test dataset. Labels (“+”), confident prediction (”●”) and prediction(”x”). 
White arrows shows the labelled key-point and the DLC prediction.  

 

2.4.2.2 Random Forest 

From the DLC key-point coordinates key-point features were calculated in such a way that they 
would explain the actions foraging and moving (Figure 8). Features 1 and 2 related to the legs angle 
and were created by using the math package (Van Rossum, 2020) while feature 3 and 4 related to 
the relative distances between the head and the leg (Figure 8). A description of the key-point 
features and how these key-point features are distributed is shown (Appendix 7: PEA key-point 

features and distribution). 

 

Figure 8 Visualisation of the calculated key-point features. Dots represent Red deer key-points. 
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As key-point features 3 and 4 contained large outliers, per key-point feature, values lower than 3 the 
third percentile were changed to the key-point features 3 percentile value and values higher than the 
97th percentile were changed to the key-point features 97th percentile creating a cut-off point off 3-
97% for key-point feature 3 and 4. As many algorithms perform better when the range of the values 
between the features are equal, the features were normalised  subtracting the values for each feature 
from its mean and scale the values to a standard deviation of 1 (Hastie et al., 2009).  
 
Plotting a legs angle key-point feature (feature 1) and a head to leg distance key-point feature (feature 
3) in relation to the left back leg for the classes moving and foraging revealed the head to leg distance 
features contained more variation between the two classes (Figure 9) and thus might be important in 
explaining variation in actions.    

 

Figure 9 Histograms showing variation in distribution of the classes moving (blue) and foraging (orange) for the features 
relating to leg angles (left) and relative distances between head and leg (right)  

There are several ways to classify an action based on key-point features. Although it is agued that DL 
has the best predictive power, there is evidence to suggest that for small datasets a traditional ML 
method is more reliable (Freytag et al., 2016). Pre-comparison of the DL algorithm, multi layer 
perceptron (MLP) (with hyperparameters batch size=32, epochs=1000, hidden layers: 128,256,128) 
with a traditional ML RF classifier actually confirmed this hypothesis that the traditional ML RF 
algorithm on a small dataset performed better than the DL MLP algorithm (Hastie et al., 2009) and 
therefore RF seemed the more appropriate AR method for PEA. An additional benefit of using the 
traditional ML algorithm RF was that instead of a black box, a feature importance graph (FIG) and 
dendrogram could be obtained to give insight in how predictions came about.   
 
The RF algorithm, is an ensemble of decision trees (Hastie et al., 2009). A decision tree algorithm 
creates multiple binary splits based on optimising homogeneity of the following nodes (Kubat & Kubat, 
2017). RF algorithms are usually more accurate than a single decision tree, because each tree contains 
a random selection of the training data and the final prediction is based on the frequency of class 
predicted by all the trees (Breiman, 2001). Similarly to YOLOv5, one model was trained for the 3 parent 
actions and another that included all actions. The key-point features that belonged to the training 
dataset (which originated from a 23.31px DLC key-point pixel error) were used as input to train the RF 
recognizing actions. In addition, the key-point features that belonged to the test dataset (which 
originated from a 217.45px key-point pixel error) were used to test the model’s performance of 
recognized actions.  
 
Training was expedited in seconds and predictions were easily obtained. The predictions were 
compared with the annotated true action labels by a classification table consisting of accuracy, 
precision and recall and a confusion matrix. In contrast to the YOLOv5 model that had a confidence 
threshold for the bounding box prediction, the RF classification algorithm was forced to always choose 



the class with the highest confidence, regardless of its confidence value. As YOLOv5 sometimes did 
not predict any class for challenging images, predictions that were likely for YOLOv5 to be wrong were 
excluded. Therefore, the YOLOv5 model may deliver more accurate results and appear better than it 
is. Luckily YOLOv5 only contained 2 false negatives out of 112 test images for the parent actions.  
 
Inference for PEA was more challenging than YOLOv5 because the DLC model that could be applied to 
new data by the function analyse time lapse frames contained the argument video type = ‘.avi’ meant 
for videos instead of individual images. It was not clear how to change this for single images. The RF 
model on the other hand, was easily downloaded and applied to new data. 
 

2.4.2.3 Box 3. The history of pose estimation  

A new family of object detection (OD) models, called pose estimation (PE) models, emerged in 2010 
outside the area of ecology (Johnson & Everingham, 2010). In PE, the key-points of the posture were 
estimated and visualized on the animals’ body by small dots called key-points. For studying actions 
this method was a breakthrough because only a few key-points on the animals body could reveal how 
body parts were related to each other (Johansson, 1973). PE even allowed researchers to do actional 
predictions based on the pose like grooming or tapping for flies (Pereira, Tabris, et al., 2020). 
Recognition of actions with PE was advantageous over other OD approaches as it only estimated the 
relevant properties of objects instead of using the pixels with varying value from the object (Mathis et 
al., 2020). Besides fine-grained control, it was assumed that also less training data was needed to get 
accurate predictions (Nath et al., 2019).  

PE was designed to predict human poses (Z. Cao, Simon, Wei, & Sheikh, 2017; Insafutdinov, Pishchulin, 
Andres, Andriluka, & Schiele, 2016; Toshev & Szegedy, 2014; Xiao, Wu, & Wei, 2018) and since 2018, 
has also become available for animals (Pereira, Shaevitz, et al., 2020). For example, PE was used for 
animals to monitor head action of fish (Huang, He, Wang, & Shen, 2021) and locomotion of cattle (X. 
Li et al., 2019) and turkeys (Straat, 2020).  

Only in recent years pose estimation has been applied on wild animals in captivity, for instance to 

indoor living Macaques (Bala et al., 2020) and tigers living in national parks (S. Li, Li, Tang, Qian, & Lin, 

2019). From a zoo in San Diego it is known that researchers are still struggling with the question as to 

how PE can contribute to AR (Duhart, Dublon, Mayton, Davenport, & Paradiso, 2019). The pose of a 

giraffe was predicted as one of the first times that PE was applied to wildlife recorded in their natural 

environment (Pereira et al., 2019). PE for wildlife is a field with enormous potential however to date, 

there are no extensive known wildlife studies that have performed PE followed by AR.  

 

2.4.3 Background 

2.4.3.2 Box 4. The history of deep learning 

Early CV classification and OD models mainly relied on part-based models that used parts of images 

separately to determine the class of an object (Fergus et al., 2003) (Figure 10). For instance, to classify 

the head of an animal, these models would detect the mouth, the nose and the eye, manually calculate 

feature distances and from here determine the class by setting manual classification rules. Aside from 

the fact that it was a time consuming approach, the method consisted mainly of manual steps, in 

which researchers could create a large bias by making assumptions, about what features were 

important (Schneider et al., 2019).  

ML deals with models that have the ability to learn from the data using algorithms without being 

explicitly programmed (A. Zhang et al., 2020). This means that ML algorithms can learn recognizing 
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patterns and use this information to predict new unseen data (Figure 10) (Kotsiantis, Zaharakis, & 

Pintelas, 2007).  

 

 

Figure 10 Schematic representation of the history of DL, image source: https://www.softwaretestinghelp.com/data-mining-
vs-machine-learning-vs-ai/    

In supervised ML, like the RF of PEA, many pairs of features and their corresponding labels, are used 

to train a model, with the features as input and the true label (e.g., foraging) as output  (Table 5) 

(Kotsiantis et al., 2007; Norouzzadeh et al., 2018). The model is tested with testing data and hidden 

labels. To find the accuracy of the model, these hidden labels are retrieved and compared with the 

models predictions (A. Zhang et al., 2020). ML contains a wide variety of methods from regression to 

RF and support vector machine (Kubat & Kubat, 2017). For recognizing actions, using ML was 

advantageous because even the position of obscured body parts could be predicted as it had learned 

these during training. The pre-determined features however, such as body part distances, that still 

required ‘hard-coding’ by programmers could still risk bias and were often not applicable to another 

taxonomic groups (Hiby et al., 2009).  

Table 5 Example ML dataset with features (input) and labels (output) 

 

DL evolved from ML and was different from traditional ML techniques by the multi-layered structure 

of their neural network that attempted to simulate the action of the human brain (A. Zhang et al., 

2020) (Figure 10). In DL even the feature extraction was automated creating an end-to-end framework 

from image to classification without the need for human interference. These features that the model 

created automatically could be for example the presence of small or large objects, the position of 

objects in the image or colour contrast. Despite the abstract concept of automatic feature extraction 

in which the user did not get to see what the actual features were, automatic feature extraction was 

a big breakthrough because it eliminated human bias and made vast amounts of information more 

easily available for ecologists (Norouzzadeh et al., 2018). Due to this advantage, DL often improved 

 
Part-based models 

 

foraging 

 

foraging 

 

foraging 

https://www.softwaretestinghelp.com/data-mining-vs-machine-learning-vs-ai/
https://www.softwaretestinghelp.com/data-mining-vs-machine-learning-vs-ai/


performance over ML methods especially for large datasets (Freytag et al., 2016; Schneider et al., 

2019).   

Neural networks (NN) exist of multiple layers of which each layer of the builds upon the previous layer 

to optimize predictions. The most basic form is the multi layered perceptron (MLP) containing, one 

input, one hidden and one output layer. Even the MLP, can already make approximate predictions 

(Kratsios, 2021) as activation functions are used that add non-linearity allowing the network to 

represent any function to fit the data (A. Zhang et al., 2020). An MLP does not work for images but is 

suitable to recognize actions based on key-point features. Convolutional neural network (CNN) are a 

class of NN with multiple hidden layers in which for each hidden layer filters are applied to extract 

information from overlapping regions that turn out to work particularly well for images (Michelucci, 

2019; Norouzzadeh et al., 2018). In a CNN, Pixels represented by numerical values are inserted into 

the network and in each layer, features are abstracted from big details in the first layers like the edge 

of the back, to more smaller details like an eye, in the last layer (Figure 11). Last, a SoftMax function 

forces to predict for each action a confidence value between 0 and 1. Depending on the algorithm 

some like YOLOv5 determines the returned prediction based on a confidence threshold, where other 

algorithms like RF have the default settings to force choosing prediction even if all confidence values 

are low. Challenges when training a DL network are that they generally require a lot more input data 

compared to a ML model because NN consist of many parameters (Michelucci, 2019; Pereira, Shaevitz, 

et al., 2020).  

  

Figure 11 Schematic overview of a convolutional neural network. Learned features are not human-specified but learned by 
the network (Norouzzadeh et al., 2018).  

 

2.4.3.2 Box 5. Automated action recognition of wildlife 

Most DL algorithms have been developed outside the field of ecology in computer image recognition, 
security or social media industries (Schneider et al., 2019). It is common for developments in camera 
recognition to shift from controlled and closed set environments like the laboratory to more 
uncontrolled environments like wildlife (Ravoor & Sudarshan, 2020). Wildlife cameras have to deal 
with variation in animals viewpoint, image quality,  occlusion, dynamic background, weather 
conditions, seasonality and an unknown number of individuals from different species that might enter 
and leave the camera at different times (Pereira et al., 2019).  

Although criticism that DL for wildlife has not been widely used yet (Schneider et al., 2019), over the 
last couple of years turtles (Carter, Bell, Miller, & Gash, 2014), primates (Brust et al., 2017; Freytag et 
al., 2016; Loos & Ernst, 2013) and elephants (Körschens, Barz, & Denzler, 2018) were identified with 
DL for conservation purposes. AR however can be much more challenging than species identification 
as actions mostly deal with more small-scale differences (Nath et al., 2019).  



  

                                                                                                              
23 

During a first attempt to classify wildlife action, in the African savanna system, researchers used the 
AlexNet model to predict the presence or non-presence of 6 actions. Unfortunately, the classification 
was based on the entire image and in reviewing the predictions there was a high frequency of 
predicted actions that were not always clear from the image (Norouzzadeh et al., 2018). Schindler & 
Steinhage  on the other hand used  477 Red deer media files as input to the OD model ResNet, to also 
classify 3 action classes from Red deer with 63,8% precision (Schindler & Steinhage, 2021).   

OD methods that classify wildlife actions based on an animal localisation can prevent overfitting, an 
advantage that the researchers who used the ResNet OD model likely took into account (Kubat & 
Kubat, 2017; Michelucci, 2019). To know how YOLOv5 and PEA would perform compared to the 
method used by Schindler & Steinhage (2001), the same input dataset was required, which 
unfortunately, was not feasible in this study. Nevertheless, it does seem that a 63.8% precision, which 
the ResNet OD model achieved, is statistically significant. It is interesting to find out how accurate the 
YOLOv5 and PEA can predict wildlife actions. 

 

 

  



3. Results 

For recognition of the parent actions foraging, moving and other, the overall accuracy, which is the 

percentage of correct predictions by the model, differed between the two approaches (Figure 12). As 

YOLOv5 contained a confidence threshold, it did not predict 2% of the test dataset images. Of the 98% 

it predicted, it reached 77% accuracy and for the pose estimation approach (PEA), all images were 

predicted with an accuracy of 53%. 

  

Figure 12 Overall accuracy YOLOv5 and the pose estimation approach (PEA) 

The precision, the percentage of a class predictions that is correct (Kubat & Kubat, 2017) was 

substantially higher for YOLOv5 than for PEA (Figure 13). Both methods had most difficulty predicting 

the class other, probably due to its heterogeneity. Although there were hardly any differences 

between foraging and moving for YOLOv5, for PEA, moving predictions were significantly worse than 

foraging. Moreover the recall, the percentage of a class that had been correctly classified as that class, 

was much lower for moving (33%) than foraging (76%) (Figure 13) (Kubat & Kubat, 2017). It is very 

likely that, not labelling key-points obscured by the animal has led to erroneous knee key-point 

predictions which influenced the leg angle features explanatory for moving actions. Alternatively, 

maybe since moving related to small scale movement of the legs and foraging to larger scale 

movement of the head PEA had more difficulty detecting small scale details compared to YOLOv5 in 

which no large differences in precision were observed. YOLOv5's low recall for moving (66%), however, 

showed that the model had difficulty recognizing moving images in the dataset.  

 

Figure 13 Precision (left) and recall (right) YOLOv5 and the pose estimation approach (PEA) 
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The confusion matrixes summarize the classes to which the predictions were mostly confused by 

breaking down the predictions for each class (Figure 14). Ideally, the matrix would have a black 

diagonal line in which all predicted actions match the true classes. It is noticeable that a significant 

part of the images YOLOv5 predicted as other were, in fact, moving, while images predicted as moving 

were rarely predicted as other. Again, it is assumed that because other was such a heterogeneous 

group, predicting this class could lead to confusions easily, in contrast to moving which mostly 

consisted of walking images. Mismatches in PEA occurred in all classes, which shows the model was 

confusing all classes with each other.  

  

Figure 14 confusion matrix YOLOv5 (left) and the pose estimation approach (PEA) (right). Predicted action (x-axis) and true 
labelled action (y-axis)        

Since in PEA, the RF belonged to the traditional ML methods, a feature importance graph (FIG) was 

shown indicating which features were most explanatory for AR (Figure 15). It used Mean Decrease in 

Impurity (MDI) as a measure of how much a splitting criterion gained by including this variable 

(Breiman, 2001). Although the FIG features contained large error bars, features related to the angles 

of the legs seemed to be less informative than features dealing with distances between the head and 

the leg which as mentioned above was not remarkable as these features were strongly influenced by 

incorrect key-point predictions of key-points occluded by the animal.  

Similar findings were found in the dendrogram of a decision tree that used the predictions of the RF 

as input. This dendrogram showed that head to leg features were used to distinguish foraging frames 

from the classes moving and other, and that a split by the leg angle feature was not as effective to 

separate large, homogenized groups (Appendix 8: Results).  



 

Figure 15 FIG RF (PEA) with mean MDI values  SD. 1-8 leg angle features, 9-18 distance head to leg features.  

For the models that looked at all 11 actions, YOLOv5 only predicted 92% of the test dataset and only 

with 50% accuracy (Appendix 8: Results). For PEA all images were predicted but only with an accuracy 

of 36%. Both methods therefore had considerably more difficulty predicting all behaviours. For the 

classes with a relatively large number of images, grazing, scanning, walking, vigilance and standing, 

most of the time again YOLOv5 performed better than PEA. For the classes with a relatively few 

images, browsing, running, sitting, roaring, grooming and camara watching, hardly any of these 

categories were predicted which was not surprising as imbalanced datasets tend to bias towards 

classes with more examples (Norouzzadeh et al., 2018) 

Also looking at the cost in terms of time it took to create, train and apply the models, YOLOv5 

outperformed PEA (Table 6). PEA took 35 more hours to create the model mainly due to labelling of 

key-points, 69 more hours to run the model and extra time to understand how to apply the DLC model 

to new data. Finally, PEA needed 12,3 GB more GPU memory. 

Table 6 Costs of the two modelling approaches for actional classification  

 YOLOv5 PEA 

Time effort creating model excl. data 
collection (hrs) 

7 (-35) 42 (+35) 

Runtime model (hrs) 1 (-69) DLC 70, RF 0 (+69) 

Applying inference  (hrs) 1 (+) >1 (-) 

GPU memory (GB) 11.1 (-12,3) DLC 23.4,  RF 0 (+12,3) 
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4. Discussion 

Camera-traps provide snapshots of animals engaged in a variety of actions, which can inform ecology 

and conservation management (Norouzzadeh et al., 2018), but manual annotation of imagery is time 

consuming and laborious (Schneider et al., 2019). The aim of this thesis was to find out whether and 

how ML techniques can automate action recognition (AR). Two methods were compared, YOLOv5 

(Bochkovskiy et al., 2020) and the pose estimation approach (PEA) consisting of pose estimation (PE) 

technique DeepLabCut (DLC) (Mathis et al., 2018) followed by a random forest (RF) algorithm (Kubat 

& Kubat, 2017). The outcome of the study indicated that YOLOv5 is 15,9% more accurate than PEA 

and with less effort of creating the models.  

YOLOv5 was excellent at predicting moving (precision 84%) and foraging (precision 83%) images yet 

the lower recall of moving (recall 66%) compared to foraging (recall 89%) showed its difficulty 

detecting moving frames in the dataset. Class other images were significantly worse predicted 

(precision 60%) but with a higher recall (recall 75%). As YOLOv5 can achieve a 99,3% average precision 

with a dataset of at least 400 images per class, it is likely current results can be improved by adding 

more training data (Liu, Tang, & Zou, 2021; Shahinfar et al., 2020). More training data will be 

particularly needed when the focus switches from the 3 parent behaviours to all behaviours, where 

finer details come into play (Bochkovskiy et al., 2020). Comparable AR research in which YouTube 

videos were used as input to a I3D CNN achieved a much lower accuracy of 36%, but was also more 

challenging as it was designed to recognize 3 or 4 actions of 32 animal species (W. Li, Swetha, & Shah, 

2020).  

Looking at the precision and recall PEA performed reasonable predicting class foraging, but much 

worse predicting classes moving and other. As in PEA precision ranges from 35% to 63%, it is clear that 

in this study, the supposed benefits for PE such as fine grained control and good performance on small 

datasets  with the current set-up were not found (Nath et al., 2019). The pixel error which is 217.45px 

yet could be 5px, indicates that a large amount of accuracy has already been lost in DLC (Nath et al., 

2019). In related work were, using a neural network, human actions were classified based on pose-

key-points, a 90% accuracy was reached which show that it is possible to accurately classify actions 

form key-points (Song, Zhang, Shan, & Wang, 2020). 

YOLOv5 and PEA were compared by accuracy, precision, recall and human effort. Comparison showed 

YOLOv5 achieved a better performance particularly for action foraging with less effort. In comparison 

to  the AR study of Schindler and Steinhage (2021) who obtained 63.8% precision also on classifying 3 

Red deer actions, YOLOv5 seems to perform better and PEA much worse, however, it should be noted 

in this comparison that a different dataset and a segmentation network ResNet in which the exact 

boundaries of the objects are determined were used (Schindler & Steinhage, 2021). 

Extra attention was paid to the prevention of overfitting by choosing OD methods that used animal 

localisation instead of directly classifying from the full image. Moreover, variation in camera-trap 

locations, age, habitats, animals shape, animal viewpoint and light conditions was preserved to allow 

for a better generalization to new data (Beery et al., 2018). Similarly, image augmentation methods 

mixup and imgaug that artificially increased training data, have likely contributed to preventing 

overfitting by adding complexity to the training process and lowering the error on the test dataset 

(Michelucci, 2019). Particularly the good results of YOLOv5s class foraging shows that the model has 

been able to predict new data correctly. Further research would be needed to better understand how 

the individual overfitting measures have contributed to a better generalization.  



A limitation to YOLOv5 was that 2 images did not contain any prediction while these were initially 

labelled with a Red deer and thus, these were classified as false negatives, causing analysis on the 

number of wrong predictions turned out slightly more advantageous for YOLOv5 than it was. YOLOv5 

could be improved by increasing the dataset and testing different hyperparameter values like number 

of epochs and batch size. Although these measures are also expected to improve PEA, for PEA, there 

were also several other presumed causes for the lower performance in PEA.  

First, DLC was trained on full images and with a MAE 217.45px was likely to have resulted in overfitting 

by background disturbance (Michelucci, 2019). Second, in hindsight not annotating key-points 

obscured by the animal was a handicap, as these key-points were often predicted on other body parts 

affecting key-point features especially related to the leg angle important for moving actions. Third, 

while the RF algorithm outperformed alternatives such as MLP, maybe an alternative DL action 

classifier with optimized hyperparameters is more effective. 

A limitation to this study in general was optimal hyperparameter values were obtained by running 

methods several times, making the network good at predicting the test dataset but less for predicting 

new data. Another limitation was that due to the predetermined train and test split, the results of this 

study have not been validated by cross validation, a resampling method using different proportions of 

the data for training and testing on different iterations, which can show results are not out of “luck”, 

but constantly performs around a certain accuracy (Kubat & Kubat, 2017).  

As DL for wildlife AR had previously not been extensively explored (W. Li et al., 2020), this research 

could bridge the gap and bring major innovations. Conservationists now can easily explore large 

volumes of action data for Red deer (Cervus elaphus) or any other animal so that they can obtain a 

more complete picture of wildlife behaviour. While method PEA still needs improvement, 

conservationists can directly apply the robust YOLOv5 model for instance to determine feeding 

behaviour of wild livestock (Oliveira, Pereira, Bresolin, Ferreira, & Dorea, 2021), recognize migration 

patterns in response to climate change (Davidson et al., 2020), detect abnormalities in responses to 

poachers (de Knegt, Eikelboom, van Langevelde, Spruyt, & Prins, 2021) or estimate daily activity 

patterns (Rowcliffe, Kays, Kranstauber, Carbone, & Jansen, 2014) and determine how these differ from 

the global activity pattern (Hester, Gordon, Baillie, & Tappin, 1999; Jayakody, Sibbald, Gordon, & 

Lambin, 2008; Rattray, 2009).  

Based on the recent findings, it may still be worth doing PEA again, but it makes sense to use the 

animals bounding box as input for DLC, always annotate all visible and obscured key-points, and add 

additional key-point features especially when expanding to all actions. An additional advantage of 

taking the bounding box, which is present in YOLOv5, is that classification per bounding box is possible 

and can therefore apply AR to an image with several animals. Moreover it is recommended that DL 

alternatives be explored for AR such as the graphical convolutional neural network ResGCN, which 

also includes a key-point skeleton and can classify actions based on consecutive images (Song et al., 

2020). It would be interesting to deduce whether YOLOv5 is still better when looking at consecutive 

images as it maybe YOLOv5 just provides a classification for each individual image, whereas ResGCN 

includes information on key-point changes from image to image (H. Cao et al., 2021). 

In general, to prove that the results are statistically sound it is recommended to add cross validation 

to both methods. To reduce overfitting, it is recommended to add a validation set used to find optimal 

values for the hyperparameters which can then be applied to the test dataset (Van Etten, Lindenbaum, 

& Bacastow, 2018). To increase performance is highly recommended, whether the aim is to classify 

the parent actions or all actions, to use at least 500 images per class to obtain a good accuracy 

(Norouzzadeh et al., 2018; Shahinfar et al., 2020). Action labelling effort can be shortened by 
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implementing the functionality of action annotation for species into annotation platforms so that 

researchers can collectively contribute to a database of action annotated training data. Expanding to 

reliable models for all behaviours will be manageable as actions and extensive key-point labels are 

already annotated, only requiring expanding the dataset and refining the key-point features. Both 

methods can be easily applied to recognize behaviour for other animals, only requiring refining actions 

and animals key-points.   
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Appendix 1: Map National Park Hoge Veluwe 

 

Figure 16 Detailed map of NPHV including camera locations 
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Appendix 2: Action annotation protocol 

The Red deer AR criteria are shown (Table 7). The protocol for annotating wildlife actions from camera 

trap images is included in the reference list (Gils, 2021).  

Table 7 Red deer AR criteria 

1.Grazing 

 

Mouth in touch with 

ground or grass 

vegetation 

2.Browsing 

 

Mouth in contact with 

woody vegetation. 

Stable leg position. 

3.Scanning 

 

Mouth reaches up or 

down but does not 

touch the vegetation. 

Can occur either while 

moving or standing. 

4.Walking 

 

Diagonal walk pattern. 

Front foot initiates 

and diagonal hind leg 

follows. Always two 

contact points, 

generally 3. 

5.Running 

 

Aerial phase with max 

2 contact points visible. 

include trot, canter and 

gallop 

6.Sitting 

 

Sitting or laying on the 

ground. 

7.Standing 

 

Legs generally parallel. 

Not particularly tense 

leg position and low 

ear position. 

8.Vigilance 

 

Tense leg position in 

combination with 

pointed upward ears 

9.Grooming 

 

Snout to body or leg, 

leg to body part or 

body part to object 

10.Roaring 

 

Head faced upwards 

and mouth opens 

11.Camera watching 

 

Face and eyes point 

towards the camera 

 

  



Appendix 3: Scripts and models 

A. Dataset creation 

• A01_data_selection.R 

• A02_download_and_image_selection.R 

• A03_collect_and_preprocess.R 

• A04_labeling.R 

• A05_create_labels_table.R 

• A06_exploring_data.R 

B. YOLOv5 

• B01_box21_Reddeer.R 

• B02_object_detection_inference.py 

• B03_confusion_matrix.py 

C. Pose estimation approach 

• C01_terminal_DLC.py 

• C02_GPU_PC_commands 

• C03_create_training_dataset.py 

• C04_train_and_evaluate_network.py 

• C05_padding.py 

• C06_analyse_time_lapse_images.py 

• C07_feature_extraction.py 

• C08_outliers_and_scaling.py 

• C09_random_forest.py 

• C10_MLP.py 

• C11_dendrogram.py 

D. General 

• D01_Graphs_results.py 

E. Models 

• E01_YOLOv5_model_parent_behaviour.pt 

• E02_YOLOv5_model_behaviour.pt 

• E03_PEA_RF_model_parent.joblib 

• E04_PEA_RF_model.joblib 
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Appendix 4: BOX21 example input  

 

Figure 17 Example csv input for the YOLOV5 model on BOX21 

Table 8 Description of information required per column 

Column  Description  

path https://multimedia.agouti.eu/assets/00add8fd
-bd07-4d43-a11d-ae8c30808c7e/file 

original_class m 

meta ("seq_id": "46acc55c-0b90-41dd-bda7-
e373b5d8651c", "depl_id": "2cc8d313-ba9c-
43c6-b5d0-f254f906f2d5", "filename": 
"00add8fd-bd07-4d43-a11d-
ae8c30808c7e.JPG") 
* 

in_validation_set FALSE 

*Remark: change the brackets () from column meta to curly brackets. 

  



Appendix 5: Train and test error graphs 

Learning of the model is shown by evaluating the train and test error during training of the model. For 

YOLOv5 the train and test error are described by the related train and test loss (Figure 18), which 

describes the penalty for bad predictions, were  a low loss indicates the model can predict well (Hastie 

et al., 2009). Results show that the loss on predicting bounding boxes is low, but prediction for the 

classes on the test (val) set is much higher, especially for all actions. The PEA DLC error shows how 

during training the average key-point pixel error evolves for the training and test dataset separately 

(Figure 19Figure 18). Training PEA RF took little time, and no loss or train test error was printed 

       

Figure 18 box loss and class loss for the parent actions (left) and all actions (right) 

 

Figure 19 DLC train and test error 
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Appendix 6: DLC annotation protocol 

The DLC annotation protocol is created to provide sufficient and accurate information about the 

position of the animal’s key-points 

To label the key-points consistently pre-decisions were made about which key-points were annotated. 

Based on skeleton analysis, real life camera trap images and an key-point annotated horse  example 

(Nath et al., 2019), 18 key-points were defined covering the important Red deer key-points, while still 

being visible from the outside (Figure 20). To obtain optimal label accuracy annotating the 506 images 

was divided into 25-minute parts of annotation alternated by 5 minutes break with a maximum of 3 

annotation hours per day.  

 

Figure 20 Key-point representation on skeleton. Image from https://johnmuirlaws.com/draw-deer-anatomy/ 

The key-points have been chosen relevant for detect all the 11 Red deer actions.  

Not all key-points are annotated in every image. An overview of the annotation criteria is shown (Table 

9). Visible key-points are annotated and obscured key-points only if occlusion is caused by non-animal 

objects.  

Table 9 annotation criteria 

Scenario Occlusion Annotated/Predicted  

Visible key-points no Yes 

Obscured key-points Yes, by non-animal objects (e.g.: vegetation) Yes 

Obscured key-points Yes, by the animal itself  No 

 

Toe 

Heel 

Knee 

https://johnmuirlaws.com/draw-deer-anatomy/


Annotation examples show key-point annotation from the side (Figure 21) and the back (Figure 22). 

Key-points that were obscured by the animals themselves, were not annotated, to reduce guesswork 

and thereby reduce the likelihood of negatively influencing the key-point prediction. As key-points 

obscured by non-animal objects like vegetation are often easy to deduce, these key-points were 

annotated. To stimulate the neural network detecting contrast with the background, apparent key-

points locations were chosen like the black contrasting muzzle or at the tip of the ear that contrasts 

with its background. 

In the example below the code of a key-point example is explained. 

Example:  L_leg_Fw_T 

1_2__3__4 

1. = (L)eft or (R)ight 

2. = leg or ear 

3. = (F)or(w)ard or (B)ack 

4. = (T)oe 

To label images consistently, an order is predefined always annotating from toe to heel to knee and 

from left front leg to right front to right back to left back followed by the back and finally the head 

key-points (Table 10).  

Table 10 Key-point label names 

Key-point labels 

1. L_leg_Fw_T 2. L_leg_Fw_K 3. L_leg_Fw_B 4. R_leg_Fw_T 

5. R_leg_Fw_K 6. R_leg_Fw_B 7. R_leg_B_T 8. R_leg_B_K 

9. R_leg_B_B 10. L_leg_B_T 11. L_leg_B_K 12. L_leg_B_B 

13. Low_back 14. High_back 15. Top_head 16. L_ear 

17. R_ear 18. Muzzle   
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Figure 21 annotation example sideview 

 

Figure 22 Annotation example behind view 

Not annotated, occlusion by animal 

Not annotated, occlusion by animal 

annotated, occlusion by object 



Appendix 7: PEA key-point features and distribution 

Table 11 Feature description of the feature extraction 

Nr. feature abbreviation 

1 shortest angle of the heel with the toe and the knee  angle_K 

2 shortest angle of the knee with heel, and a hypothetical point with x 

value of heel and y value of knee. 

angle_H 

3 Vertical distance muzzle to toe, relative to vertical distance heel to toe muzzle_toe 

4 Vertical distance head to heel, relative to vertical distance knee to heel head_heel 

 

Figure 23 Distribution of all features before scaling 

 

Figure 24 Distribution of all features after scaling 
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Appendix 8: Results 

Regarding the models including all 11 actions, their accuracy (Figure 25), precision and recall 

(Figure 26), confusion matrixes (Figure 27) and a table of human-effort (Table 12) are shown. 

Finally, the dendrogram for the parent behaviours is shown (Figure 28). 

 

Figure 25 Overall accuracy YOLOv5 and PEA (PEA) 

 

Figure 26 Precision (left) and recall (right) YOLOv5 and PEA (PEA) 

 

Figure 27 confusion matrix YOLOv5 (left) and PEA (PEA) (right). Predicted action (x-axis) and true labelled action (y-axis)        



 

Table 12 Time effort YOLOv5 and PEA (PEA) 

YOLOv5  Estimated time in hours 

Data collection 22 

Any Desk connection 1 

Change csv to input BOX21 1 

Set configuration files  1 

Manually check bounding boxes 1 

Train the network 1 

Create confidence matrix 1 

Inference 1 

Total  29 

 

PEA  Estimated building time in hours 

Data collection 22 

Any Desk connection 1 

Preparation 6 

label images 17 

Creating training dataset 5 

Prepare network 5 

Analyse images 3 

feature extraction 3 

RF 1 

Inference 1 

Total  64 
 

Finally, the PEA RF dendrogram is shown evaluating the parent actions (Figure 28). The dendrogram 

was created by running a single decision tree based on the output of the RF and used the Gini value 

as a measurement of the variation within a class, like MDI in the FIG. From the top to the left side of 

the dendrogram we see that two-distance head to leg features (muzzle_toe_RB & muzzle_toe_Lfw). 

If answer to the feature criteria was yes, the group went left and if not then to the right. After two 

splits there was already a homogenized group with 23 foraging images. From this dendrogram is 

becomes also clear that the leg angle features have not been able to create large, homogenized 

groups. Feature head_heel_LFw was used but did not did only separate 7 samples. Due to an error in 

the plotting system the number of samples were incorrect as normally the sum of the values should 

equal the number of samples. 
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Figure 28 Decision tree based on predictions RF. Value = [Foraging, moving, other]. 

 

 

 

 


